Back to Search Start Over

Heterostructure design of hydrangea-like Co2P/Ni2P@C multilayered hollow microspheres for high-efficiency microwave absorption.

Authors :
Wang, Wei
Nan, Kai
Zheng, Hao
Li, Qingwei
Wang, Yan
Source :
Journal of Materials Science & Technology; May2024, Vol. 181, p104-114, 11p
Publication Year :
2024

Abstract

• A P-doped hydrangea-like layered composite (Co 2 P/Ni 2 P@C) encapsulated with Ni-LDH was successfully designed. • Benefiting from the multilayered hollow hydrangea-like structure, enhanced polarization loss, and optimized synergistic effect, Co 2 P/Ni 2 P@C composite exhibits superior EMW absorption. • The multilayered hollow structure promotes the multiple scattering and reflection of microwaves. • The hierarchical Co 2 P/Ni 2 P@C composite exhibits a RL min value of −64.6 dB at 2 mm. Structural design and elemental doping are research hotspots for the preparation of lightweight absorbers with high absorption performance and low filling ratio. Herein, a P-doped hydrangea-like layered composite (Co 2 P/Ni 2 P@C) encapsulated with Ni-LDH was successfully synthesized by solvothermal method followed by phosphorization. The defects generated by P doping and the generation of multilayered nonuniform interfaces enhance the dielectric loss induced by polarization. Simultaneously, the magnetic phosphides induce magnetic loss and modulate the dielectric properties of the carbon matrix to enhance the conductive loss. The multilayered hollow structure of this composite promotes the scattering and reflection of electromagnetic waves and optimizes the impedance characteristics. As a result, the multilayered hollow Co 2 P/Ni 2 P@C composite exhibits an optimum reflection loss value (RL) of –64.6 dB at 15.1 GHz with a thickness of 2 mm and a filler ratio of only 10 wt%. The radar cross-section (RCS) attenuation further demonstrates that the material can dissipate microwave energy in practical applications. Overall, this work provides an effective development strategy for the design of multilayered high-performance electromagnetic wave (EMW) absorbers doped with strongly polarized elements. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10050302
Volume :
181
Database :
Supplemental Index
Journal :
Journal of Materials Science & Technology
Publication Type :
Periodical
Accession number :
175792259
Full Text :
https://doi.org/10.1016/j.jmst.2023.09.023