Back to Search Start Over

Effects of polyethylene microplastics with different particle sizes and concentrations on the community structure and function of periphytic biofilms.

Authors :
Li, Weiyu
Luo, Dan
Yan, Ning
Miao, Lingzhan
Adyel, Tanveer M.
Kong, Ming
Hou, Jun
Source :
Journal of Environmental Chemical Engineering; Dec2023, Vol. 11 Issue 6, pN.PAG-N.PAG, 1p
Publication Year :
2023

Abstract

The widespread use of microplastics (MPs) inevitably lead to their release into aquatic environment, where they are likely to encounter the periphytic biofilms, leading to changes in microbial community structure and function. However studies on the toxicity of MPs with different particle sizes and concentrations to biofilms are still lacking. Here, the effects of polyethylene (PE) MPs with three sizes (10, 40 and 120 µm) and two concentrations (2 and 20 mg/L) on biofilm communities were investigated in microcosms over a 28-day incubation period. High-throughput sequencing showed that the alpha and beta diversity of biofilm community were significantly altered by MPs, depending on their size and concentration. Typically, larger particle sizes and higher concentrations resulted in more significant changes in biofilm community structure, indicating a stronger shading effect of larger particles. Compared to the controls, 120 µm MPs treatments significantly reduced the Chao1 and Shannon index of biofilm community regardless of the concentration, while 40 µm MPs reduced the Shannon index only at high concentrations. Moreover, MPs resulted in the changes in the abundances of bacterial communities, with the abundance of Cyanobacteria increasing significantly while that of Proteobacteria and Bacteroidetes decreasing in all treatments. Interestingly, functional analysis by FAPROTAX suggested that a decrease in the abundance of chemoheterotrophy genes and an increase in photoautotrophic- and nitrification-associated genes were observed after exposure to MPs, leading to potential changes of the carbon and nitrogen metabolism of biofilms. These results highlighted that MPs exposure had negative impacts on microbial community structure and function, which in turn affects microbial-mediated processes. [Display omitted] • Effects of MPs with different particle sizes on biofilms were studied. • The responses were dependent on the particle sizes and concentrations of MPs. • MPs of larger sizes resulted in more significant changes in community structure. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22133437
Volume :
11
Issue :
6
Database :
Supplemental Index
Journal :
Journal of Environmental Chemical Engineering
Publication Type :
Academic Journal
Accession number :
174295955
Full Text :
https://doi.org/10.1016/j.jece.2023.111287