Back to Search Start Over

An analysis of the in-cylinder soots generated from the main- and post-injection combustion in diesel engines.

Authors :
Zhang, Wei
Fan, Chenyang
Lyu, Gang
Li, Yunqiang
Liu, Ye
Wang, Chenxi
Song, Chonglin
Source :
Proceedings of the Combustion Institute; 2023, Vol. 39 Issue 1, p939-947, 9p
Publication Year :
2023

Abstract

In modern diesel engines, the exhaust soot primarily comes from the main-injection combustion and post-injection combustion. Therefore, to reduce the diesel soot emissions, it is essential to better understand the soots generated from the main-injection combustion (main-soot) and from the post-injection combustion (post-soot). This work focused on the properties of the main-soot and post-soot during the combustion process, including the primary particle size, nanostructure and soot mass. The in-cylinder soot samples were obtained using a self-developed total cylinder sampling system, and the primary particle size and nanostructure were determined using high-resolution transmission electron microscopy. The isolation of the post-soot was achieved by adding dimethyl ether to the intake gas instead of the real main-injection to create a simulated main-injection combustion environment for post-soot formation. Combustion analysis and numerical simulation results showed that the simulated combustion environment for post-soot formation generated by the DME combustion was very similar to that generated by the real main-injection combustion. During the combustion process, although the main-soot and post-soot exhibit similar variations in the primary particle size, the maximum primary particle size of the post-soot is smaller than that of the main-soot (23.38 nm for the main-soot and 20.51 nm for the post-soot). The main-soot and post-soot show almost the same trends in the nanostructure, as characterized by the fringe length, separation and tortuosity, throughout the combustion process. The introduction of the post-injection accelerates the reduction of the primary particle size of the main-soot and the increase in the structural order of the main-soot. Because a large number of the main-soot particles are oxidized during the post-injection combustion, the post-soot accounts for a considerable proportion in the engine-out soot (i.e., 42%). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15407489
Volume :
39
Issue :
1
Database :
Supplemental Index
Journal :
Proceedings of the Combustion Institute
Publication Type :
Academic Journal
Accession number :
164157014
Full Text :
https://doi.org/10.1016/j.proci.2022.07.216