Cite
Single-Atom Cu Channel and N‑Vacancy Engineering Enables Efficient Charge Separation and Transfer between C3N4 Interlayers for Boosting Photocatalytic Hydrogen Production.
MLA
Shen, Jiachao, et al. “Single-Atom Cu Channel and N‑Vacancy Engineering Enables Efficient Charge Separation and Transfer between C3N4 Interlayers for Boosting Photocatalytic Hydrogen Production.” ACS Catalysis, vol. 13, no. 9, May 2023, pp. 6280–88. EBSCOhost, https://doi.org/10.1021/acscatal.2c05789.
APA
Shen, J., Luo, C., Qiao, S., Chen, Y., Tang, Y., Xu, J., Fu, K., Yuan, D., Tang, H., Zhang, H., & Liu, C. (2023). Single-Atom Cu Channel and N‑Vacancy Engineering Enables Efficient Charge Separation and Transfer between C3N4 Interlayers for Boosting Photocatalytic Hydrogen Production. ACS Catalysis, 13(9), 6280–6288. https://doi.org/10.1021/acscatal.2c05789
Chicago
Shen, Jiachao, Chenghui Luo, Shanshan Qiao, Yuqing Chen, Yanhong Tang, Jieqiong Xu, Kaixing Fu, et al. 2023. “Single-Atom Cu Channel and N‑Vacancy Engineering Enables Efficient Charge Separation and Transfer between C3N4 Interlayers for Boosting Photocatalytic Hydrogen Production.” ACS Catalysis 13 (9): 6280–88. doi:10.1021/acscatal.2c05789.