Back to Search Start Over

Long-term in vivo observations show biocompatibility and performance of ZX00 magnesium screws surface-modified by plasma-electrolytic oxidation in Göttingen miniature pigs.

Authors :
Kopp, Alexander
Fischer, Heilwig
Soares, Ana Prates
Schmidt-Bleek, Katharina
Leber, Christoph
Kreiker, Henri
Duda, Georg
Kröger, Nadja
van Gaalen, Kerstin
Hanken, Henning
Jung, Ole
Smeets, Ralf
Heiland, Max
Rendenbach, Carsten
Source :
Acta Biomaterialia; Feb2023, Vol. 157, p720-733, 14p
Publication Year :
2023

Abstract

Bioabsorbable magnesium implants for orthopedic fixation of bone have recently become available for different fields of indication. While general questions of biocompatibility have been answered, tailoring suitable degradation kinetics for specific applications as well as long-term tissue integration remain the focus of current research. The aim of this study was the evaluation of the long-term degradation behavior and osseointegration of Mg-Ca-Zn (ZX00MEO) based magnesium implants with plasma-electrolytic oxidation (PEO) surface modification (ZX00MEO-PEO) in comparison to non-surface modified implants in vivo and in vitro. Besides a general evaluation of the biological performance of the alloy over a prolonged period, the main hypothesis was that PEO surface modification significantly reduces implant degradation rate and improves tissue interaction. In vitro , the microstructure and surface of the bioabsorbable screws were characterized by SEM/EDS, cytocompatibility and degradation testing facilitating hydrogen gas evolution, carried out following ISO 10993-5/-12 and ASTM F3268-18a/ASTM G1–03 (E1:2017). In vivo , screws were implanted in the frontal bone of Minipigs for 6, 12, and 18 months, following radiological and histomorphometric analysis. A slower and more uniform degradation and improved cytocompatibility could be shown for the ZX00MEO-PEO group in vitro. A significant reduction of degradation rate and enhanced bone formation around the ZX00MEO-PEO screws in vivo was confirmed. Proficient biocompatibility and tissue integration could generally be shown in vivo regardless of surface state. The tested magnesium alloy shows generally beneficial properties as an implant material, while PEO-surface modification further improves the bioabsorption behavior both in vitro and in vivo. Devices from bioabsorbable Magnesium have recently been introduced to orthopedic applications. However, the vast degradation of Magnesium within the human body still gives limitations. While reliable in-vivo data on most promising surface treatments such as P lasma- e lectrolytic- O xidation is generally scarce, long-time results in large animals are to this date completely missing. To overcome this lack of evidence, we studied a Magnesium-Calzium-Zinc-alloy with surface enhancement by PEO for the first time ever over a period of 18 months in a large animal model. In-vitro, surface-modified screws showed significantly improved cytocompatibility and reduction of degradation confirmed by hydrogen gas evolution testing, while in-vivo radiological and histological evaluation generally showed good biocompatibility and bioabsorption as well as significantly enhanced reduction of degradation and faster bone regeneration in the PEO-surface-modified group. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17427061
Volume :
157
Database :
Supplemental Index
Journal :
Acta Biomaterialia
Publication Type :
Academic Journal
Accession number :
161523773
Full Text :
https://doi.org/10.1016/j.actbio.2022.11.052