Back to Search Start Over

Benzo[a]pyrene inhibits testosterone biosynthesis via NDUFA10-mediated mitochondrial compromise in mouse Leydig cells: Integrating experimental and in silico toxicological approaches.

Authors :
Yang, Wang
Cui, Haonan
Chai, Zili
Zou, Peng
Shi, Fuquan
Yang, Binwei
Zhang, Guowei
Yang, Huan
Chen, Qing
Liu, Jinyi
Cao, Jia
Ling, Xi
Ao, Lin
Source :
Ecotoxicology & Environmental Safety; Oct2022, Vol. 244, pN.PAG-N.PAG, 1p
Publication Year :
2022

Abstract

Benzo[a]pyrene (B[a]P), a representative of polycyclic aromatic hydrocarbons (PAHs), is ubiquitously spread in the environment and showing deleterious impacts on male steroidogenesis, including testosterone synthesis disorder. However, the precise mechanisms involved in B[a]P-induced steroidogenesis perturbation remains obscure. In the present study, we integrated in vivo tests, transcriptome profiling, in vitro assays, and conjoint in silico toxicological approaches to delineate the detailed mechanisms. In mouse models, we observed that B[a]P administration remarkably inhibited testosterone synthesis accompanied by ultrastructural impairments of mitochondria and mitophagosome formation in mouse Leydig cells. Transcriptome profiling showed that B[a]P down-regulated the expression of Ndufa9 , Ndufa6 , Ndufa10 , and Ndufa5 in mouse testes, which are identified as critical genes involved in the assembly and functionality of mitochondrial complex I. In the in vitro tests, the bioactive B[a]P metabolite BPDE induced perturbation of testosterone synthesis by NDUFA10-mediated mitochondrial impairment, which was further exacerbated by mitophagy in TM3 Leydig cells. The findings of in silico toxicological analyses were highly consistent with the experimental observations and further unveiled that B[a]P/BPDE-involved PPARα activation could serve as a molecular initiating event to trigger the decline in Ndufa10 expression and testosterone synthesis. Overall, we have shown the first evidence that mitochondrial compromise in Leydig cells is the extremely crucial target in B[a]P-induced steroidogenesis perturbation. [Display omitted] • B[a]P-induced mitochondrial damage inhibits testosterone synthesis in Leydig cells. • Mitophagy exacerbates B[a]P-induced mitochondrial damage and decline in testosterone. • NDUFA10 participates in B[a]P-mediated impairment of complex Ⅰ and steroidogenesis. • B[a]P-activated PPARα triggers declines in NDUFA10 expression and steroidogenesis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01476513
Volume :
244
Database :
Supplemental Index
Journal :
Ecotoxicology & Environmental Safety
Publication Type :
Academic Journal
Accession number :
159216495
Full Text :
https://doi.org/10.1016/j.ecoenv.2022.114075