Back to Search Start Over

Characteristics of farmland water consumption under two-year wheat-maize interannual rotation patterns in Heilonggang Plain.

Authors :
ZHAO Ying-Xing
WANG Biao
LIU Qing
SONG Tong
ZHANG Xue-Peng
CHEN Yuan-Quan
SUI Peng
Source :
Acta Agronomica Sinica; 2022, Vol. 48 Issue 7, p1787-1799, 13p
Publication Year :
2022

Abstract

In order to solve the contradiction of water and grain about the traditional continuous winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) double-cropping system (W-M→W-M, CK) in the groundwater funnel area of Heilonggang Plain, the new rotation patterns with two-year cycle of "one-year traditional W-M + one-year other crops" were designed, trying to find out a water-saving and green stable cropping system suitable for this region. The field experiment was carried out in Wuqiao, Hebei province from October 2018 to September 2020. Setting spring maizes→W-M (Ms→W-M), winter wheat→W-M (W→W-M), spring sweet potato (Dioscorea esculenta (Lour.) Burkill)→W-M (Psw→W-M), spring peanut (Arachis hypogaea Linn.)→W-M (As→W-M), winter wheat-summer peanut→W-M (W-A→W-M) and potato (Solanum tuberosum L.)-silage corn→W-M (P-C→W-M) six rotation patterns with two years cycle, we tried to analyze the characteristics of farmland water consumption. The results showed that: (1) Compared with CK, the annual water consumption of rotation patterns reduced by 3.1%-15.2%, expect W-A→W-M. The annual average water consumption of Ms→W-M, P-C→W-M, As→W-M and Psw→W-M decreased by 6.1%, 7.2%, 9.2%, and 15.2%, respectively, and the annual average net groundwater consumption of the four patterns also decreased by 9.0%, 10.3%, 16.2%, and 32.9%, respectively. (2) The combination of crops at different water consumption levels could achieve water complementary spatially. Winter wheat mainly consumed 0-160 cm soil moisture, which was reduced by 20% compared with sowing. Potato mainly consumed 0-100 cm soil moisture, which was reduced by 12% compared with sowing. Spring peanut mainly consumed 20-80 cm soil moisture, which was reduced by 4% compared with sowing. (3) Partial rotation patterns could reduce the demand for irrigation water and increase soil water storage. In 2019 rotation year, when the irrigation amount of Ms→W-M and As→W-M patterns were 145 mm and 175 mm less than CK, the soil water storage of 2 m increased by 27.2 mm and 12.6 mm compared with the start of rotation year, respectively. When the irrigation amount of W-M→W-M was 300 mm, the soil water storage of 2 m increased by 18.4 mm compared with the start of rotation year. (4) Partial rotation patterns had better economic water use efficiency (EWUE), which were 1.2-1.5 times of CK. The EWUE of As→W-M and W-A→W-M were 1.5 times and 1.2 times significantly higher than that of CK, respectively. Based on the characteristics of farmland water consumption and EWUE, the two-year rotation patterns of As→W-M, Psw→W-M, P-C→W-M, Ms→W-M could reduce the farmland water consumption, meanwhile, maintain and improve the economic water use efficiency, and could be implemented to partially replace the winter wheat and summer maize double-cropping system in Heilonggang Plain. [ABSTRACT FROM AUTHOR]

Details

Language :
Chinese
ISSN :
04963490
Volume :
48
Issue :
7
Database :
Supplemental Index
Journal :
Acta Agronomica Sinica
Publication Type :
Academic Journal
Accession number :
157322010
Full Text :
https://doi.org/10.3724/SP.J.1006.2022.11030