Back to Search Start Over

Pregnancy exposure to synthetic phenols and placental DNA methylation — An epigenome-wide association study in male infants from the EDEN cohort.

Authors :
Jedynak, Paulina
Tost, Jörg
Calafat, Antonia M.
Bourova-Flin, Ekaterina
Busato, Florence
Forhan, Anne
Heude, Barbara
Jakobi, Milan
Rousseaux, Sophie
Schwartz, Joel
Slama, Rémy
Vaiman, Daniel
Philippat, Claire
Lepeule, Johanna
Source :
Environmental Pollution; Dec2021, Vol. 290, pN.PAG-N.PAG, 1p
Publication Year :
2021

Abstract

In utero exposure to environmental chemicals, such as synthetic phenols, may alter DNA methylation in different tissues, including placenta — a critical organ for fetal development. We studied associations between prenatal urinary biomarker concentrations of synthetic phenols and placental DNA methylation. Our study involved 202 mother-son pairs from the French EDEN cohort. Nine phenols were measured in spot urine samples collected between 22 and 29 gestational weeks. We performed DNA methylation analysis of the fetal side of placental tissues using the IlluminaHM450 BeadChips. We evaluated methylation changes of individual CpGs in an adjusted epigenome-wide association study (EWAS) and identified differentially methylated regions (DMRs). We performed mediation analysis to test whether placental tissue heterogeneity mediated the association between urinary phenol concentrations and DNA methylation. We identified 46 significant DMRs (≥5 CpGs) associated with triclosan (37 DMRs), 2,4-dichlorophenol (3), benzophenone-3 (3), methyl- (2) and propylparaben (1). All but 2 DMRs were positively associated with phenol concentrations. Out of the 46 identified DMRs, 7 (6 for triclosan) encompassed imprinted genes (APC , FOXG1 , GNAS , GNASAS , MIR886 , PEG10 , SGCE), which represented a significant enrichment. Other identified DMRs encompassed genes encoding proteins responsible for cell signaling, transmembrane transport, cell adhesion, inflammatory, apoptotic and immunological response, genes encoding transcription factors, histones, tumor suppressors, genes involved in tumorigenesis and several cancer risk biomarkers. Mediation analysis suggested that placental cell heterogeneity may partly explain these associations. This is the first study describing the genome-wide modifications of placental DNA methylation associated with pregnancy exposure to synthetic phenols or their precursors. Our results suggest that cell heterogeneity might mediate the effects of triclosan exposure on placental DNA methylation. Additionally, the enrichment of imprinted genes within the DMRs suggests mechanisms by which certain exposures, mainly to triclosan, could affect fetal development. [Display omitted] • Pregnancy exposure to synthetic phenols was associated with placental DNA methylation changes. • We identified 37 differently methylated regions (DMRs) associated with exposure to triclosan. • Identified DMRs were enriched for imprinted genes. • Placental cell heterogeneity may mediate association of triclosan with DNA methylation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02697491
Volume :
290
Database :
Supplemental Index
Journal :
Environmental Pollution
Publication Type :
Academic Journal
Accession number :
153030752
Full Text :
https://doi.org/10.1016/j.envpol.2021.118024