Back to Search Start Over

Comparative Analysis of Supervised Machine Learning Algorithms to Build a Predictive Model for Evaluating Students' Performance.

Authors :
Guabassi, Inssaf El
Bousalem, Zakaria
Marah, Rim
Qazdar, Aimad
Source :
International Journal of Online & Biomedical Engineering; 2021, Vol. 17 Issue 2, p90-105, 16p
Publication Year :
2021

Abstract

In recent years, the world's population is increasingly demanding to predict the future with certainty, predicting the right information in any area is becoming a necessity. One of the ways to predict the future with certainty is to determine the possible future. In this sense, machine learning is a way to analyze huge datasets to make strong predictions or decisions. The main objective of this research work is to build a predictive model for evaluating students' performance. Hence, the contributions are threefold. The first is to apply several supervised machine learning algorithms (i.e. ANCOVA, Logistic Regression, Support Vector Regression, Log-linear Regression, Decision Tree Regression, Random Forest Regression, and Partial Least Squares Regression) on our education dataset. The second purpose is to compare and evaluate algorithms used to create a predictive model based on various evaluation metrics. The last purpose is to determine the most important factors that influence the success or failure of the students. The experimental results showed that the Log-linear Regression provides a better prediction as well as the behavioral factors that influence students' performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
26268493
Volume :
17
Issue :
2
Database :
Supplemental Index
Journal :
International Journal of Online & Biomedical Engineering
Publication Type :
Academic Journal
Accession number :
149164774
Full Text :
https://doi.org/10.3991/ijoe.v17i02.20025