Back to Search Start Over

Liquid Air Energy Storage with LNG cold recovery for air liquefaction improvement.

Authors :
Peng, Xiaodong
She, Xiaohui
Nie, Binjian
Li, Chuan
Li, Yongliang
Ding, Yulong
Source :
Energy Procedia; Feb2019, Vol. 158, p4759-4764, 6p
Publication Year :
2019

Abstract

Abstract The rapid increase in application of intermittent renewable energy generation has stimulated the development of energy storage system to guarantee a stable supply in electricity grid. As a large-scale storage technology, Liquid Air Energy Storage (LAES) technology has attracted many attractions in recent years due to it offers many unique advantages including high energy density, mature technologies based and geographical-constraint free. However, current LAES has relatively low round trip efficiency (less than 60%) and still needs improvement. In the LAES, the recovered cold energy from the liquid air is insufficient to cool the compressed air to the lowest temperature with the shortage of ~18% and liquid air yield does not achieve the maximum in the charging process; external free cold sources would be needed to further increase the liquid air yield, and the round trip efficiency could easily break through 60%. This paper proposes an innovative LAES system integrated with LNG regasification process, the objectives in this established work are to improve the product yield of liquid air and enhance the overall roundtrip efficiency. Sensibility analysis and exergy efficiency analysis of charging process and discharging process at LAES are discussed. Meanwhile, the comparisons of system performance are made between traditional LAES system and LAES with LNG regasification system (LAES-LNG) at same operating parameters. Through the LAES-LNG system, more liquid air is generated. Results show that relatively higher round trip efficiency could be obtained, with 15-35% enhancement compared with the current LAES. Also, liquid air yield obtains a significant improvement to 0.87. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18766102
Volume :
158
Database :
Supplemental Index
Journal :
Energy Procedia
Publication Type :
Academic Journal
Accession number :
135598505
Full Text :
https://doi.org/10.1016/j.egypro.2019.01.724