Back to Search
Start Over
More than climate? Predictors of tree canopy height vary with scale in complex terrain, Sierra Nevada, CA (USA).
- Source :
- Forest Ecology & Management; Feb2019, Vol. 434, p142-153, 12p
- Publication Year :
- 2019
-
Abstract
- Highlights • Maximum tree height is associated with climatic variables across an elevation gradient. • Variables such as topography and soil are also important in a water limited system. • Associations between tree height and environmental variables are scale dependent. • At fine spatial scales, topography and soil variables increase in importance. • The results have implications on how forests are managed in the Western US. Abstract Tall trees and vertical forest structure are associated with increased productivity, biomass and wildlife habitat quality. While climate has been widely hypothesized to control forest structure at broad scales, other variables could be key at fine scales, and are associated with forest management. In this study we identify the environmental conditions (climate, topography, soils) associated with increased tree height across spatial scales using airborne Light Detection and Ranging (LiDAR) data to measure canopy height. The study was conducted over a large elevational gradient from 200 to 3000 m in the Sierra Nevada Mountains (CA, USA) spanning sparse oak woodlands to closed canopy conifer forests. We developed Generalized Boosted Models (GBMs) of forest height, ranking predictor variable importance against Maximum Canopy Height (CH Max) at six spatial scales (25, 50, 100, 250, 500, 1000 m). In our study area, climate variables such as the climatic water deficit and mean annual precipitation were more strongly correlated with CH max (18–52% relative importance) than soil and topographic variables, and models at intermediate (50–500 m) scales explained the most variance in CH Max (R<superscript>2</superscript> 0.77–0.83). Certain soil variables such as soil bulk density and pH, as well as topographic variables such as the topographic wetness index, slope curvature and potential solar radiation, showed consistent, strong associations with canopy structure across the gradient, but these relationships were scale dependent. Topography played a greater role in predicting forest structure at fine spatial scales, while climate variables dominated our models, particularly at coarse scales. Our results indicate that multiple abiotic factors are associated with increased maximum tree height; climatic water balance is most strongly associated with this component of forest structure but varies across all spatial scales examined (6.9–54.8% relative importance), while variables related to topography also explain variance in tree height across the elevational gradient, particularly at finer spatial scales (37.15%, 20.26% relative importance at 25, 50 m scales respectively). [ABSTRACT FROM AUTHOR]
- Subjects :
- FOREST canopies
TREE height
CLIMATE change
FOREST biomass
Subjects
Details
- Language :
- English
- ISSN :
- 03781127
- Volume :
- 434
- Database :
- Supplemental Index
- Journal :
- Forest Ecology & Management
- Publication Type :
- Academic Journal
- Accession number :
- 133972098
- Full Text :
- https://doi.org/10.1016/j.foreco.2018.12.006