Back to Search Start Over

Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties.

Authors :
Buitrago, Jennifer O.
Patel, Kapil D.
El-Fiqi, Ahmed
Lee, Jung-Hwan
Kundu, Banani
Lee, Hae-Hyoung
Kim, Hae-Won
Source :
Acta Biomaterialia; Mar2018, Vol. 69, p218-233, 16p
Publication Year :
2018

Abstract

Cell encapsulating hydrogels with tunable mechanical and biological properties are of special importance for cell delivery and tissue engineering. Silk fibroin and collagen, two typical important biological proteins, are considered potential as cell culture hydrogels. However, both have been used individually, with limited properties ( e.g., collagen has poor mechanical properties and cell-mediated shrinkage, and silk fibroin from Bombyx mori (mulberry) lacks cell adhesion motifs). Therefore, the combination of them is considered to achieve improved mechanical and biological properties with respect to individual hydrogels. Here, we show that the cell-encapsulating hydrogels of mulberry silk fibroin / collagen are implementable over a wide range of compositions, enabled simply by combining the different gelation mechanisms. Not only the gelation reaction but also the structural characteristics, consequently, the mechanical properties and cellular behaviors are accelerated significantly by the silk fibroin / collagen hybrid hydrogel approach. Of note, the mechanical and biological properties are tunable to represent the combined merits of individual proteins. The shear storage modulus is tailored to range from 0.1 to 20 kPa along the iso-compositional line, which is considered to cover the matrix stiffness of soft-to-hard tissues. In particular, the silk fibroin / collagen hydrogels are highly elastic, exhibiting excellent resistance to permanent deformation under different modes of stress; without being collapsed or water-squeezed out ( vs. not possible in individual proteins) – which results from the mechanical synergism of interpenetrating networks of both proteins. Furthermore, the role of collagen protein component in the hybrid hydrogels provides adhesive sites to cells, stimulating anchorage and spreading significantly with respect to mulberry silk fibroin gel, which lacks cell adhesion motifs. The silk fibroin / collagen hydrogels can encapsulate cells while preserving the viability and growth over a long 3D culture period. Our findings demonstrate that the silk / collagen hydrogels possess physical and biological properties tunable and significantly improved ( vs. the individual protein gels), implying their potential uses for cell delivery and tissue engineering. Statement of Significance Development of cell encapsulating hydrogels with excellent physical and biological properties is important for the cell delivery and cell-based tissue engineering. Here we communicate for the first time the novel protein composite hydrogels comprised of ‘Silk’ and ‘Collagen’ and report their outstanding physical, mechanical and biological properties that are not readily achievable with individual protein hydrogels. The properties include i) gelation accelerated over a wide range of compositions, ii) stiffness levels covering 0.1 kPa to 20 kPa that mimic those of soft-to-hard tissues, iii) excellent elastic behaviors under various stress modes (bending, twisting, stretching, and compression), iv) high resistance to cell-mediated gel contraction, v) rapid anchorage and spreading of cells, and vi) cell encapsulation ability with a long-term survivability. These results come from the synergism of individual proteins of alpha-helix and beta-sheet structured networks. We consider the current elastic cell-encapsulating hydrogels of silk-collagen can be potentially useful for the cell delivery and tissue engineering in a wide spectrum of soft-to-hard tissues. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17427061
Volume :
69
Database :
Supplemental Index
Journal :
Acta Biomaterialia
Publication Type :
Academic Journal
Accession number :
128183764
Full Text :
https://doi.org/10.1016/j.actbio.2017.12.026