Back to Search Start Over

Effect of Denoising on Dimensionally Reduced Sparse Hyperspectral Unmixing.

Authors :
Swarna, M.
Sowmya, V.
Soman, K.P.
Source :
Procedia Computer Science; 2017, Vol. 115, p391-398, 8p
Publication Year :
2017

Abstract

In hyperspectral images, spectral mixing occurs when objects lying beside each cannot be distinguished as different entities due to its low spatial resolution. Other hurdles in hyperspectral imaging are its huge dimension and noisy bands. In this paper, a new approach for spectral unmixing is presented where, the data is reduced dimensionally and, the bands eliminated during this are denoised using the existing denoising methods. Then, dataset with these bands is dimensionally reduced and their presence after reduction is validated using spectral unmixing methods. The effectiveness of this method is evaluated using parametric measures such as RMSE and classification accuracy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18770509
Volume :
115
Database :
Supplemental Index
Journal :
Procedia Computer Science
Publication Type :
Academic Journal
Accession number :
125705051
Full Text :
https://doi.org/10.1016/j.procs.2017.09.096