Back to Search Start Over

An improved Hybrid Quantum-Inspired Genetic Algorithm (HQIGA) for scheduling of real-time task in multiprocessor system.

Authors :
Konar, Debanjan
Bhattacharyya, Siddhartha
Sharma, Kalpana
Sharma, Sital
Pradhan, Sri Raj
Source :
Applied Soft Computing; Apr2017, Vol. 53, p296-307, 12p
Publication Year :
2017

Abstract

This article concerns an efficient real-time task scheduling assisted by Hybrid Quantum-Inspired Genetic Algorithm (HQIGA) in multiprocessor environment. Relying on concepts and the principles of quantum mechanics, HQIGA explores the computing power of quantum computation. To drive schedule toward better convergence, HQIGA operates using rotation gate for exploration of variable chromosomes described by qubits in Hilbert hyperspace. A fitness function associated with popularly known heuristic earliest deadline first (EDF) is employed and random key distribution is adopted to convert the qubits chromosomes to valid schedule solutions. In addition to this, permutation based trimming technique is applied to diversify the population which yields good quality schedules. To establish the effectiveness of the suggested HQIGA, it demonstrates using various number of real-time tasks and processors along with arbitrary processing time. Simulation result shows that HQIGA outperforms the classical genetic algorithm (CGA) and Hybrid Particle Swarm Optimization (HPSO) in terms of fitness values obtained using less number of generations and also it improves the scheduling time significantly. HQIGA is also tested separately with the heuristic Shortest Computation Time First (SCTF) technique to show the superiority of EDF over SCTF. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15684946
Volume :
53
Database :
Supplemental Index
Journal :
Applied Soft Computing
Publication Type :
Academic Journal
Accession number :
121455795
Full Text :
https://doi.org/10.1016/j.asoc.2016.12.051