Back to Search
Start Over
Evaluation of Fracture Toughness Behavior of Polyethylene Pipe Materials1.
- Source :
- Journal of Pressure Vessel Technology; 10/1/2015, Vol. 137 Issue 5, p1-10, 10p
- Publication Year :
- 2015
-
Abstract
- The main purpose of the present paper is to investigate the effect of crosshead speed, specimen thickness, and welding on the fracture toughness. The material of the investigated pipe is a high density polyethylene (HDPE), which is commonly used in natural gas piping systems. The welding technique used in this study is butt-fusion (BF) welding technique. The crosshead speed ranged from 5 to 500 mm/min and specimen thickness ranged from 9 to 45 mm for both welded and unwelded specimens at room temperature, Ta = 20 °C. Curved three point bend (CTPB) specimens were used to determine KQ. Furthermore, the results of fracture toughness, KQ, will be compared with the plane-strain fracture toughness, JIC, for welded and unwelded specimens. The experimental results revealed that KQ increases with increasing the crosshead speed, while KQ decreases as the specimen thickness increases. The investigation reveals that the apparent fracture toughness, KQ, for HDPE pipe of unwelded specimen is greater than that of corresponding value for welded specimen. The same trend was observed for the plane-strain fracture toughness, JIC. At lower crosshead speeds there is a minimum deviation in KQ between welded and unwelded specimens, while the deviation becomes larger with increasing crosshead speed. [ABSTRACT FROM AUTHOR]
- Subjects :
- FRACTURE toughness
FRACTURE mechanics
POLYETHYLENE
THERMOPLASTICS
CELLULOID
Subjects
Details
- Language :
- English
- ISSN :
- 00949930
- Volume :
- 137
- Issue :
- 5
- Database :
- Supplemental Index
- Journal :
- Journal of Pressure Vessel Technology
- Publication Type :
- Academic Journal
- Accession number :
- 111949138
- Full Text :
- https://doi.org/10.1115/1.4029925