Back to Search
Start Over
Fully Integrated High-Speed Intravascular Optical Coherence Tomography/Near-Infrared Fluorescence Structural/Molecular Imaging In Vivo Using a Clinically Available Near-Infrared Fluorescence-Emitting Indocyanine Green to Detect Inflamed Lipid-Rich...
- Source :
- Circulation: Cardiovascular Interventions; Aug2014, Vol. 7 Issue 4, p560-569, 10p
- Publication Year :
- 2014
-
Abstract
- Lipid-rich inflamed coronary plaques are prone to rupture. The purpose of this study was to assess lipid-rich inflamed plaques in vivo using fully integrated high-speed optical coherence tomography (OCT)/near-infrared fluorescence (NIRF) molecular imaging with a Food and Drug Administration-approved indocyanine green (ICG).An integrated high-speed intravascular OCT/NIRF imaging catheter and a dual-modal OCT/NIRF system were constructed based on a clinical OCT platform. For imaging lipid-rich inflamed plaques, the Food and Drug Administration-approved NIRF-emitting ICG (2.25 mg/kg) or saline was injected intravenously into rabbit models with experimental atheromata induced by balloon injury and 12- to 14-week high-cholesterol diets. Twenty minutes after injection, in vivo OCT/NIRF imaging of the infrarenal aorta and iliac arteries was acquired only under contrast flushing through catheter (pullback speed up to 20 mm/s). NIRF signals were strongly detected in the OCT-visualized atheromata of the ICG-injected rabbits. The in vivo NIRF target-to-background ratio was significantly larger in the ICG-injected rabbits than in the saline-injected controls (P<0.01). Ex vivo peak plaque target-to-background ratios were significantly higher in ICG-injected rabbits than in controls (P<0.01) on fluorescence reflectance imaging, which correlated well with the in vivo target-to-background ratios (P<0.01; r=0.85) without significant bias (0.41). Cellular ICG uptake, correlative fluorescence microscopy, and histopathology also corroborated the in vivo imaging findings.Integrated OCT/NIRF structural/molecular imaging with a Food and Drug Administration -approved ICG accurately identified lipid-rich inflamed atheromata in coronary-sized vessels. This highly translatable dual-modal imaging approach could enhance our capabilities to detect high-risk coronary plaques. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19417640
- Volume :
- 7
- Issue :
- 4
- Database :
- Supplemental Index
- Journal :
- Circulation: Cardiovascular Interventions
- Publication Type :
- Academic Journal
- Accession number :
- 110242709
- Full Text :
- https://doi.org/10.1161/CIRCINTERVENTIONS.114.001498