Back to Search
Start Over
Synergistic effects of carboxymethyl-hexanoyl chitosan, cationic polyurethane-short branch PEI in miR122 gene delivery: Accelerated differentiation of iPSCs into mature hepatocyte-like cells and improved stem cell therapy in a hepatic failure model.
- Source :
- Acta Biomaterialia; Feb2015, Vol. 13, p228-244, 17p
- Publication Year :
- 2015
-
Abstract
- MicroRNA122 (miR122), a liver-specific microRNA, plays critical roles in homeostatic regulation and hepatic-specific differentiation. Induced pluripotent stem cells (iPSCs) have promising potential in regenerative medicine, but it remains unknown whether non-viral vector-mediated miR122 delivery can enhance the differentiation of iPSCs into hepatocyte-like cells (iPSC-Heps) and rescue thioacetamide-induced acute hepatic failure (AHF) in vivo. In this study, we demonstrated that embedment of miR122 complexed with polyurethane-graft-short-branch polyethylenimine copolymer (PU-PEI) in nanostructured amphiphatic carboxymethyl–hexanoyl chitosan (CHC) led to dramatically enhanced miR122 delivery into human dental pulp-derived iPSCs (DP-iPSCs) and facilitated these DP-iPSCs to differentiate into iPSC-Heps (miR122-iPSC-Heps) with mature hepatocyte functions. Microarray and bioinformatics analysis further indicated that CHC/PU-PEI-miR122 promoted the gene-signature pattern of DP-iPSCs to shift into a liver-specific pattern. Furthermore, intrahepatic delivery of miR122-iPSC-Heps, but not miR-Scr-iPSC-Heps, improved liver functions and rescued recipient survival, and CHC-mediated delivery showed a better efficacy than that using phosphate buffered saline as a delivery vehicle. In addition, these transplanted miR122-iPSC-Heps remained viable and could produce circulatory albumin for 4 months. Taken together, our findings demonstrate that non-viral delivery of miR122 shortens the time of iPSC differentiation into hepatocytes and the delivery of miR122-iPSC-Heps using CHC as a vehicle exhibited promising hepatoprotective efficacy in vivo. miR122-iPSC-Heps may represent a feasible cell source and provide an efficient and alternative strategy for hepatic regeneration in AHF. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 17427061
- Volume :
- 13
- Database :
- Supplemental Index
- Journal :
- Acta Biomaterialia
- Publication Type :
- Academic Journal
- Accession number :
- 100362190
- Full Text :
- https://doi.org/10.1016/j.actbio.2014.11.018