Back to Search Start Over

Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude.

Authors :
Zeng, Ning
Zhao, Fang
Kalnay, Eugenia
Salawitch, Ross J.
Collatz, George J.
West, Tristram O.
Guanter, Luis
Source :
Nature; 11/20/2014, Vol. 515 Issue 7527, p394-397, 4p, 4 Graphs
Publication Year :
2014

Abstract

The atmospheric carbon dioxide (CO<subscript>2</subscript>) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO<subscript>2</subscript> uptake during the boreal spring and summer growing seasons and CO<subscript>2</subscript> release during the autumn and winter seasons. The CO<subscript>2</subscript> seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO<subscript>2</subscript> as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO<subscript>2</subscript> seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO<subscript>2</subscript> data and atmospheric inversions shows a robust 15 per cent long-term increase in CO<subscript>2</subscript> seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO<subscript>2</subscript> seasonal amplitude arises from two major regions: the mid-latitude cropland between 25° N and 60° N and the high-latitude natural vegetation between 50° N and 70° N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 per cent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO<subscript>2</subscript> fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001-2010 than in 1961-1970, suggesting that human land use and management contribute to seasonal changes in the CO<subscript>2</subscript> exchange between the biosphere and the atmosphere. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00280836
Volume :
515
Issue :
7527
Database :
Complementary Index
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
99573579
Full Text :
https://doi.org/10.1038/nature13893