Back to Search Start Over

Determining conductivity and mobility values of individual components in multiphase composite Cu1.97Ag0.03Se.

Authors :
Day, Tristan W.
Zeier, Wolfgang G.
Brown, David R.
Melot, Brent C.
Snyder, G. Jeffrey
Source :
Applied Physics Letters; 10/27/2014, Vol. 105 Issue 17, p1-5, 5p, 2 Charts, 3 Graphs
Publication Year :
2014

Abstract

The intense interest in phase segregation in thermoelectrics as a means to reduce the lattice thermal conductivity and to modify the electronic properties from nanoscale size effects has not been met with a method for separately measuring the properties of each phase assuming a classical mixture. Here, we apply effective medium theory for measurements of the in-line and Hall resistivity of a multiphase composite, in this case Cu<subscript>1.97</subscript>Ag<subscript>0.03</subscript>Se. The behavior of these properties with magnetic field as analyzed by effective medium theory allows us to separate the conductivity and charge carrier mobility of each phase. This powerful technique can be used to determine the matrix properties in the presence of an unwanted impurity phase, to control each phase in an engineered composite, and to determine the maximum carrier concentration change by a given dopant, making it the first step toward a full optimization of a multiphase thermoelectric material and distinguishing nanoscale effects from those of a classical mixture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00036951
Volume :
105
Issue :
17
Database :
Complementary Index
Journal :
Applied Physics Letters
Publication Type :
Academic Journal
Accession number :
99273713
Full Text :
https://doi.org/10.1063/1.4897435