Back to Search Start Over

Towards Practical Application of Paper based Printed Circuits: Capillarity Effectively Enhances Conductivity of the Thermoplastic Electrically Conductive Adhesives.

Authors :
Haoyi Wu
Sum Wai Chiang
Wei Lin
Cheng Yang
Zhuo Li
Jingping Liu
Xiaoya Cui
Feiyu Kang
Ching Ping Wong
Source :
Scientific Reports; 9/5/2014, p1-8, 8p
Publication Year :
2014

Abstract

Direct printing nanoparticle-based conductive inks onto paper substrates has encountered difficulties e.g. the nanoparticles are prone to penetrate into the pores of the paper and become partially segmented, and the necessary low-temperature-sintering process is harmful to the dimension-stability of paper. Here we prototyped the paper-based circuit substrate in combination with printed thermoplastic electrically conductive adhesives (ECA), which takes the advantage of the capillarity of paper and thus both the conductivity and mechanical robustness of the printed circuits were drastically improved without sintering process. For instance, the electrical resistivity of the ECA specimen on a pulp paper (6 × 10<superscript>-5</superscript>Ω·cm, with 50 wt% loading of Ag) was only 14% of that on PET film than that on PET film. This improvement has been found directly related to the sizing degree of paper, in agreement with the effective medium approximation simulation results in this work. The thermoplastic nature also enables excellent mechanical strength of the printed ECA to resist repeated folding. Considering the generality of the process and the wide acceptance of ECA technique in the modern electronic packages, this method may find vast applications in e.g. circuit boards, capacitive touch pads, and radio frequency identification antennas, which have been prototyped in the manuscript. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
98280884
Full Text :
https://doi.org/10.1038/srep06275