Back to Search Start Over

SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution.

Authors :
Miller, Christopher A.
White, Brian S.
Dees, Nathan D.
Griffith, Malachi
Welch, John S.
Griffith, Obi L.
Vij, Ravi
Tomasson, Michael H.
Graubert, Timothy A.
Walter, Matthew J.
Ellis, Matthew J.
Schierding, William
DiPersio, John F.
Ley, Timothy J.
Mardis, Elaine R.
Wilson, Richard K.
Ding, Li
Source :
PLoS Computational Biology; Aug2014, Vol. 10 Issue 8, p1-15, 15p, 5 Graphs
Publication Year :
2014

Abstract

The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1553734X
Volume :
10
Issue :
8
Database :
Complementary Index
Journal :
PLoS Computational Biology
Publication Type :
Academic Journal
Accession number :
97810534
Full Text :
https://doi.org/10.1371/journal.pcbi.1003665