Back to Search
Start Over
Molecular dynamics study of the mechanical loss in amorphous pure and doped silica.
- Source :
- Journal of Chemical Physics; 8/7/2014, Vol. 141 Issue 5, p1-9, 9p, 1 Chart, 6 Graphs
- Publication Year :
- 2014
-
Abstract
- Gravitational wave detectors and other precision measurement devices are limited by the thermal noise in the oxide coatings on the mirrors of such devices. We have investigated the mechanical loss in amorphous oxides by calculating the internal friction using classical, atomistic molecular dynamics simulations. We have implemented the trajectory bisection method and the non-local ridge method in the DL-POLY molecular dynamics simulation software to carry out those calculations. These methods have been used to locate the local potential energy minima that a system visits during a molecular dynamics trajectory and the transition state between any two consecutive minima. Using the numerically calculated barrier height distributions, barrier asymmetry distributions, relaxation times, and deformation potentials, we have calculated the internal friction of pure amorphous silica and silica mixed with other oxides. The results for silica compare well with experiment. Finally, we use the numerical calculations to comment on the validity of previously used theoretical assumptions. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 141
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 97430416
- Full Text :
- https://doi.org/10.1063/1.4890958