Back to Search Start Over

Lefschetz type formulas for dg-categories.

Authors :
Polishchuk, Alexander
Source :
Selecta Mathematica, New Series; Jul2014, Vol. 20 Issue 3, p885-928, 44p
Publication Year :
2014

Abstract

We prove an analog of the holomorphic Lefschetz formula for endofunctors of smooth compact dg-categories. We deduce from it a generalization of the Lefschetz formula of Lunts (J Algebra 356:230-256, ) that takes the form of a reciprocity law for a pair of commuting endofunctors. As an application, we prove a version of Lefschetz formula proposed by Frenkel and Ngô (Bull Math Sci 1(1):129-199, ). Also, we compute explicitly the ingredients of the holomorphic Lefschetz formula for the dg-category of matrix factorizations of an isolated singularity $${\varvec{w}}$$ . We apply this formula to get some restrictions on the Betti numbers of a $${\mathbb Z}/2$$ -equivariant module over $$k[[x_1,\ldots ,x_n]]/({\varvec{w}})$$ in the case when $${\varvec{w}}(-x)={\varvec{w}}(x)$$ . [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10221824
Volume :
20
Issue :
3
Database :
Complementary Index
Journal :
Selecta Mathematica, New Series
Publication Type :
Academic Journal
Accession number :
96538165
Full Text :
https://doi.org/10.1007/s00029-013-0143-5