Back to Search Start Over

Profiles of Extracellular miRNA in Cerebrospinal Fluid and Serum from Patients with Alzheimer's and Parkinson's Diseases Correlate with Disease Status and Features of Pathology.

Authors :
Burgos, Kasandra
Malenica, Ivana
Metpally, Raghu
Courtright, Amanda
Rakela, Benjamin
Beach, Thomas
Shill, Holly
Adler, Charles
Sabbagh, Marwan
Villa, Stephen
Tembe, Waibhav
Craig, David
Van Keuren-Jensen, Kendall
Source :
PLoS ONE; May2014, Vol. 9 Issue 5, p1-20, 20p
Publication Year :
2014

Abstract

The discovery and reliable detection of markers for neurodegenerative diseases have been complicated by the inaccessibility of the diseased tissue- such as the inability to biopsy or test tissue from the central nervous system directly. RNAs originating from hard to access tissues, such as neurons within the brain and spinal cord, have the potential to get to the periphery where they can be detected non-invasively. The formation and extracellular release of microvesicles and RNA binding proteins have been found to carry RNA from cells of the central nervous system to the periphery and protect the RNA from degradation. Extracellular miRNAs detectable in peripheral circulation can provide information about cellular changes associated with human health and disease. In order to associate miRNA signals present in cell-free peripheral biofluids with neurodegenerative disease status of patients with Alzheimer's and Parkinson's diseases, we assessed the miRNA content in cerebrospinal fluid and serum from postmortem subjects with full neuropathology evaluations. We profiled the miRNA content from 69 patients with Alzheimer's disease, 67 with Parkinson's disease and 78 neurologically normal controls using next generation small RNA sequencing (NGS). We report the average abundance of each detected miRNA in cerebrospinal fluid and in serum and describe 13 novel miRNAs that were identified. We correlated changes in miRNA expression with aspects of disease severity such as Braak stage, dementia status, plaque and tangle densities, and the presence and severity of Lewy body pathology. Many of the differentially expressed miRNAs detected in peripheral cell-free cerebrospinal fluid and serum were previously reported in the literature to be deregulated in brain tissue from patients with neurodegenerative disease. These data indicate that extracellular miRNAs detectable in the cerebrospinal fluid and serum are reflective of cell-based changes in pathology and can be used to assess disease progression and therapeutic efficacy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
9
Issue :
5
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
96282038
Full Text :
https://doi.org/10.1371/journal.pone.0094839