Back to Search Start Over

Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns.

Authors :
Fay-Wei Li
Villarreal, Juan Carlos
Kelly, Steven
Rothfels, Carl J.
Melkonian, Michael
Frangedakis, Eftychios
Ruhsam, Markus
Sigel, Erin M.
Der, Joshua P.
Pittermann, Jarmila
Burge, Dylan O.
Pokorny, Lisa
Larsson, Anders
Tao Chen
Weststrand, Stina
Thomas, Philip
Carpenter, Eric
Yong Zhang
Zhijian Tian
Li Chen
Source :
Proceedings of the National Academy of Sciences of the United States of America; 5/6/2014, Vol. 111 Issue 18, p6672-6677, 6p
Publication Year :
2014

Abstract

Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor–neochrome–that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
111
Issue :
18
Database :
Complementary Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
96040225
Full Text :
https://doi.org/10.1073/pnas.1319929111