Back to Search Start Over

An Analysis of the Global Expression of MicroRNAs in an Experimental Model of Physiological Left Ventricular Hypertrophy.

Authors :
Martinelli, Nidiane C.
Cohen, Carolina R.
Santos, Kátia G.
Castro, Mauro A.
Biolo, Andréia
Frick, Luzia
Silvello, Daiane
Lopes, Amanda
Schneider, Stéfanie
Andrades, Michael E.
Clausell, Nadine
Matte, Ursula
Rohde, Luis E.
Source :
PLoS ONE; Apr2014, Vol. 9 Issue 4, p1-10, 10p
Publication Year :
2014

Abstract

Background: MicroRNAs (miRs) are a class of small non-coding RNAs that regulate gene expression. Studies of transgenic mouse models have indicated that deregulation of a single miR can induce pathological cardiac hypertrophy and cardiac failure. The roles of miRs in the genesis of physiological left ventricular hypertrophy (LVH), however, are not well understood. Objective: To evaluate the global miR expression in an experimental model of exercise-induced LVH. Methods: Male Balb/c mice were divided into sedentary (SED) and exercise (EXE) groups. Voluntary exercise was performed on an odometer-monitored metal wheels for 35 days. Various tests were performed after 7 and 35 days of training, including a transthoracic echocardiography, a maximal exercise test, a miR microarray (miRBase v.16) and qRT-PCR analysis. Results: The ratio between the left ventricular weight and body weight was increased by 7% in the EXE group at day 7 (p<0.01) and by 11% at day 35 of training (p<0.001). After 7 days of training, the microarray identified 35 miRs that were differentially expressed between the two groups: 20 were up-regulated and 15 were down-regulated in the EXE group compared with the SED group (p = 0.01). At day 35 of training, 25 miRs were differentially expressed: 15 were up-regulated and 10 were decreased in the EXE animals compared with the SED animals (p<0.01). The qRT-PCR analysis demonstrated an increase in miR-150 levels after 35 days and a decrease in miR-26b, miR-27a and miR-143 after 7 days of voluntary exercise. Conclusions: We have identified new miRs that can modulate physiological cardiac hypertrophy, particularly miR-26b, -150, -27a and -143. Our data also indicate that previously established regulatory gene pathways involved in pathological LVH are not changed in physiological LVH. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
9
Issue :
4
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
95818039
Full Text :
https://doi.org/10.1371/journal.pone.0093271