Back to Search Start Over

Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways.

Authors :
Wang, Feng-Ping
Zhang, Yu
Chen, Ying
He, Ying
Qi, Ji
Hinrichs, Kai-Uwe
Zhang, Xin-Xu
Xiao, Xiang
Boon, Nico
Source :
ISME Journal: Multidisciplinary Journal of Microbial Ecology; May2014, Vol. 8 Issue 5, p1069-1078, 10p
Publication Year :
2014

Abstract

Anaerobic oxidation of methane (AOM) is a crucial process limiting the flux of methane from marine environments to the atmosphere. The process is thought to be mediated by three groups of uncultivated methane-oxidizing archaea (ANME-1, 2 and 3). Although the responsible microbes have been intensively studied for more than a decade, central mechanistic details remain unresolved. On the basis of an integrated analysis of both environmental metatranscriptome and single-aggregate genome of a highly active AOM enrichment dominated by ANME-2a, we provide evidence for a complete and functioning AOM pathway in ANME-2a. All genes required for performing the seven steps of methanogenesis from CO<subscript>2</subscript> were found present and actively expressed. Meanwhile, genes for energy conservation and electron transportation including those encoding F<subscript>420</subscript>H<subscript>2</subscript> dehydrogenase (Fpo), the cytoplasmic and membrane-associated Coenzyme B-Coenzyme M heterodisulfide (CoB-S-SCoM) reductase (HdrABC, HdrDE), cytochrome C and the Rhodobacter nitrogen fixation (Rnf) complex were identified and expressed, whereas genes encoding for hydrogenases were absent. Thus, ANME-2a is likely performing AOM through a complete reversal of methanogenesis from CO<subscript>2</subscript> reduction without involvement of canonical hydrogenase. ANME-2a is demonstrated to possess versatile electron transfer pathways that would provide the organism with more flexibility in substrate utilization and capacity for rapid adjustment to fluctuating environments. This work lays the foundation for understanding the environmental niche differentiation, physiology and evolution of different ANME subgroups. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17517362
Volume :
8
Issue :
5
Database :
Complementary Index
Journal :
ISME Journal: Multidisciplinary Journal of Microbial Ecology
Publication Type :
Academic Journal
Accession number :
95659583
Full Text :
https://doi.org/10.1038/ismej.2013.212