Back to Search
Start Over
Odd Graphs Are Prism-Hamiltonian and Have a Long Cycle.
- Source :
- LATIN 2014: Theoretical Informatics; 2014, p379-390, 12p
- Publication Year :
- 2014
-
Abstract
- The odd graph <italic>O</italic><subscript><italic>k</italic></subscript> is the graph whose vertices are all subsets with <italic>k</italic> elements of a set {1,…,2<italic>k</italic> + 1}, and two vertices are joined by an edge if the corresponding pair of <italic>k</italic>-subsets is disjoint. A conjecture due to Biggs claims that <italic>O</italic><subscript><italic>k</italic></subscript> is hamiltonian for <italic>k</italic> ≥ 3 and a conjecture due to Lovász implies that <italic>O</italic><subscript><italic>k</italic></subscript> has a hamiltonian path for <italic>k</italic> ≥ 1. In this paper, we show that the prism over <italic>O</italic><subscript><italic>k</italic></subscript> is hamiltonian and that <italic>O</italic><subscript><italic>k</italic></subscript> has a cycle with .625|<italic>V</italic>(<italic>O</italic><subscript><italic>k</italic></subscript>)| vertices at least. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISBNs :
- 9783642544224
- Database :
- Complementary Index
- Journal :
- LATIN 2014: Theoretical Informatics
- Publication Type :
- Book
- Accession number :
- 95559004
- Full Text :
- https://doi.org/10.1007/978-3-642-54423-1_33