Back to Search Start Over

Odd Graphs Are Prism-Hamiltonian and Have a Long Cycle.

Authors :
De Campos Mesquita, Felipe
Bueno, Letícia Rodrigues
De Alencar Hausen, Rodrigo
Source :
LATIN 2014: Theoretical Informatics; 2014, p379-390, 12p
Publication Year :
2014

Abstract

The odd graph <italic>O</italic><subscript><italic>k</italic></subscript> is the graph whose vertices are all subsets with <italic>k</italic> elements of a set {1,…,2<italic>k</italic> + 1}, and two vertices are joined by an edge if the corresponding pair of <italic>k</italic>-subsets is disjoint. A conjecture due to Biggs claims that <italic>O</italic><subscript><italic>k</italic></subscript> is hamiltonian for <italic>k</italic> ≥ 3 and a conjecture due to Lovász implies that <italic>O</italic><subscript><italic>k</italic></subscript> has a hamiltonian path for <italic>k</italic> ≥ 1. In this paper, we show that the prism over <italic>O</italic><subscript><italic>k</italic></subscript> is hamiltonian and that <italic>O</italic><subscript><italic>k</italic></subscript> has a cycle with .625|<italic>V</italic>(<italic>O</italic><subscript><italic>k</italic></subscript>)| vertices at least. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783642544224
Database :
Complementary Index
Journal :
LATIN 2014: Theoretical Informatics
Publication Type :
Book
Accession number :
95559004
Full Text :
https://doi.org/10.1007/978-3-642-54423-1_33