Back to Search
Start Over
Bio-based coatings as potential barriers to chemical contaminants from recycled paper and board for food packaging.
- Source :
- Food Additives & Contaminants. Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment; Mar2014, Vol. 31 Issue 3, p402-413, 12p
- Publication Year :
- 2014
-
Abstract
- Partition and diffusion experiments were carried out with paper and board samples coated with different biopolymers. The aim was to evaluate the physicochemical behaviour and barrier properties of bio-coatings against migration of typical contaminants from recycled paper packaging. Focus was directed towards water-based, renewable biopolymers, such as modified starches (cationic starch and cationic waxy starch), plant and animal proteins (gluten and gelatine), poured onto paper with an automatic applicator. Additionally, a comparison with polyethylene-laminated paper was performed. Microstructural observations of the bio-coated paper allowed the characterisation of samples. From the partitioning studies, considerable differences in the adsorption behaviour of the selected contaminants between bio-coated or uncoated paper and air were highlighted. For both the polar and non-polar compounds considered (benzophenone and diisobutyl phthalate, respectively), the lowest values of partition coefficients were found when paper was bio-coated, making it evident that biopolymers acted as chemical/physical barriers towards these contaminants. These findings are discussed considering the characteristics of the tested biopolymers. Diffusion studies into the solid food simulant poly 2,6-diphenyl-p-phenylene oxide, also known as Tenax®, confirmed that all the tested biopolymers slowed down migration. The Weibull kinetic model was fitted to the experimental data to compare migration from paper and bio-coated paper. Values found forĪ², an index determining the pattern of curvature, ranged from 1.1 to 1.7 for uncoated and polyethylene paper, whereas for bio-coated papers they ranged from 2.2 to 4.9, corresponding to the presence of an evident lag phase due to barrier properties of the tested bio-coatings. [ABSTRACT FROM PUBLISHER]
Details
- Language :
- English
- ISSN :
- 19440049
- Volume :
- 31
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Food Additives & Contaminants. Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment
- Publication Type :
- Academic Journal
- Accession number :
- 95284601
- Full Text :
- https://doi.org/10.1080/19440049.2013.869360