Back to Search
Start Over
On some lower bounds of some symmetry integrals.
- Source :
- Afrika Matematica; Mar2014, Vol. 25 Issue 1, p183-195, 13p
- Publication Year :
- 2014
-
Abstract
- We study the 'symmetry integral', say $$I_f$$, of some arithmetic functions $$f:\mathbb{N }\rightarrow \mathbb{R }$$; we obtain from lower bounds of $$I_f$$ (for a large class of arithmetic functions $$f$$) lower bounds for the 'Selberg integral' of $$f$$, say $$J_f$$ (both these integrals give informations about $$f$$ in almost all the short intervals $$[x-h,x+h]$$, when $$N\le x\le 2N$$). In particular, when $$f=d_k$$, the divisor function (having Dirichlet series $$\zeta ^k$$, with $$\zeta $$ the Riemann zeta function), where $$k\ge 3$$ is integer, we give lower bounds for the Selberg integrals, say $$J_k=J_{d_k}$$, of the $$d_k$$. We apply elementary methods (Cauchy inequality to get Large Sieve type bounds) in order to give $$I_f$$ lower bounds. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10129405
- Volume :
- 25
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Afrika Matematica
- Publication Type :
- Academic Journal
- Accession number :
- 94464518
- Full Text :
- https://doi.org/10.1007/s13370-012-0108-4