Back to Search Start Over

A Kernel-based sparse representation method for face recognition.

Authors :
Zhu, Ningbo
Li, Shengtao
Source :
Neural Computing & Applications; Mar2014, Vol. 24 Issue 3/4, p845-852, 8p
Publication Year :
2014

Abstract

Sparse Representation Method has been proved to outperform conventional face recognition (FR) methods and is widely applied in recent years. A novel Kernel-based Sparse Representation Method (KBSRM) is proposed in this paper. In order to cope with the possible complex variation of the face images caused by varying facial expression and pose, the KBSRM first uses a kernel-induced distance to determine N nearest neighbors of the testing sample from all the training samples. Then, in the second step, the KBSRM represents the testing sample as a linear combination of the determinate N nearest neighbors and performs the classification by the representation result. It can be inferred that the N nearest training samples selected are closer to the test sample than the rest, so using the N nearest neighbors to represent the testing sample can make the ultimate classification more accurate. A number of FR experiments show that the KBSRM can achieve a better classification result than the algorithm mentioned in Xu et al. (Neural Comput Appl doi:). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09410643
Volume :
24
Issue :
3/4
Database :
Complementary Index
Journal :
Neural Computing & Applications
Publication Type :
Academic Journal
Accession number :
94378727
Full Text :
https://doi.org/10.1007/s00521-012-1218-5