Back to Search Start Over

Comparing context-aware recommender systems in terms of accuracy and diversity.

Authors :
Panniello, Umberto
Tuzhilin, Alexander
Gorgoglione, Michele
Source :
User Modeling & User-Adapted Interaction; Feb2014, Vol. 24 Issue 1/2, p35-65, 31p
Publication Year :
2014

Abstract

Although the area of context-aware recommender systems (CARS) has made a significant progress over the last several years, the problem of comparing various contextual pre-filtering, post-filtering and contextual modeling methods remained fairly unexplored. In this paper, we address this problem and compare several contextual pre-filtering, post-filtering and contextual modeling methods in terms of the accuracy and diversity of their recommendations to determine which methods outperform the others and under which circumstances. To this end, we consider three major factors affecting performance of CARS methods, such as the type of the recommendation task, context granularity and the type of the recommendation data. We show that none of the considered CARS methods uniformly dominates the others across all of these factors and other experimental settings; but that a certain group of contextual modeling methods constitutes a reliable 'best bet' when choosing a sound CARS approach since they provide a good balance of accuracy and diversity of contextual recommendations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09241868
Volume :
24
Issue :
1/2
Database :
Complementary Index
Journal :
User Modeling & User-Adapted Interaction
Publication Type :
Academic Journal
Accession number :
94278025
Full Text :
https://doi.org/10.1007/s11257-012-9135-y