Back to Search Start Over

Predicting the Risk of Suicide by Analyzing the Text of Clinical Notes.

Authors :
Poulin, Chris
Shiner, Brian
Thompson, Paul
Vepstas, Linas
Young-Xu, Yinong
Goertzel, Benjamin
Watts, Bradley
Flashman, Laura
McAllister, Thomas
Source :
PLoS ONE; Jan2014, Vol. 9 Issue 1, p1-7, 7p
Publication Year :
2014

Abstract

We developed linguistics-driven prediction models to estimate the risk of suicide. These models were generated from unstructured clinical notes taken from a national sample of U.S. Veterans Administration (VA) medical records. We created three matched cohorts: veterans who committed suicide, veterans who used mental health services and did not commit suicide, and veterans who did not use mental health services and did not commit suicide during the observation period (nā€Š=ā€Š70 in each group). From the clinical notes, we generated datasets of single keywords and multi-word phrases, and constructed prediction models using a machine-learning algorithm based on a genetic programming framework. The resulting inference accuracy was consistently 65% or more. Our data therefore suggests that computerized text analytics can be applied to unstructured medical records to estimate the risk of suicide. The resulting system could allow clinicians to potentially screen seemingly healthy patients at the primary care level, and to continuously evaluate the suicide risk among psychiatric patients. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
9
Issue :
1
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
94234778
Full Text :
https://doi.org/10.1371/journal.pone.0085733