Back to Search
Start Over
Analysis of sea-island cotton and upland cotton in response to Verticillium dahliae infection by RNA sequencing.
- Source :
- BMC Genomics; 2013, Vol. 14 Issue 1, p1-27, 27p, 1 Diagram, 5 Charts, 6 Graphs
- Publication Year :
- 2013
-
Abstract
- Background Cotton Verticillium wilt is a serious soil-borne vascular disease that causes great economic loss each year. However, due to the lack of resistant varieties of upland cotton, the molecular mechanisms of resistance to this disease, especially to the pathogen Verticillium dahliae, remain unclear. Results We used the RNA-seq method to research the molecular mechanisms of cotton defence responses to different races of Verticillium dahliae by comparing infected sea-island cotton and upland cotton. A total of 77,212 unigenes were obtained, and the unigenes were subjected to BLAST searching and annotated using the GO and KO databases. Six sets of digital gene expression data were mapped to the reference transcriptome. The gene expression profiles of cotton infected with Verticillium dahliae were compared to those of uninfected cotton; 44 differentially expressed genes were identified. Regarding genes involved in the phenylalanine metabolism pathway, the hydroxycinnamoyl transferase gene (HCT) was upregulated in upland cotton whereas PAL, 4CL, CAD, CCoAOMT, and COMT were upregulated in sea-island cotton. Almost no differentially expressed genes in this pathway were identified in sea-island cotton and upland cotton when they were infected with V. dahliae V991 and V. dahliae D07038, respectively. Conclusions Our comprehensive gene expression data at the transcription level will help elucidate the molecular mechanisms of the cotton defence response to V. dahliae. By identifying the genes involved in the defence response of each type of cotton to V. dahliae, our data not only provide novel molecular information for researchers, but also help accelerate research on genes involved in defences in cotton. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14712164
- Volume :
- 14
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- BMC Genomics
- Publication Type :
- Academic Journal
- Accession number :
- 93581005
- Full Text :
- https://doi.org/10.1186/1471-2164-14-852