Back to Search Start Over

Verified indifferentiable hashing into elliptic curves.

Authors :
Barthe, Gilles
Grégoire, Benjamin
Heraud, Sylvain
Olmedo, Federico
Zanella-Béguelin, Santiago
Source :
Journal of Computer Security; 2013, Vol. 21 Issue 6, p881-917, 37p
Publication Year :
2013

Abstract

Many cryptographic systems based on elliptic curves are proven secure in the Random Oracle Model, assuming there exist probabilistic functions that map elements in some domain (e.g. bitstrings) onto uniformly and independently distributed points in a curve. When implementing such systems, and in order for the proof to carry over to the implementation, those mappings must be instantiated with concrete constructions whose behavior does not deviate significantly from random oracles. In contrast to other approaches to public-key cryptography, where candidates to instantiate random oracles have been known for some time, the first generic construction for hashing into ordinary elliptic curves indifferentiable from a random oracle was put forward only recently by Brier et al. We present a machine-checked proof of this construction. The proof is based on an extension of the CertiCrypt framework with logics and mechanized tools for reasoning about approximate forms of observational equivalence, and integrates mathematical libraries of group theory and elliptic curves. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0926227X
Volume :
21
Issue :
6
Database :
Complementary Index
Journal :
Journal of Computer Security
Publication Type :
Academic Journal
Accession number :
93303525
Full Text :
https://doi.org/10.3233/JCS-130476