Back to Search Start Over

Contactless, photoinitiated snap-through in azobenzene-functionalized polymers.

Authors :
Ravi Shankar, M.
Smith, Matthew L.
Tondiglia, Vincent P.
Kyung Min Lee
McConney, Michael E.
Wang, David H.
Loon-Seng Tan
White, Timothy J.
Source :
Proceedings of the National Academy of Sciences of the United States of America; 11/19/2013, Vol. 110 Issue 47, p18792-18797, 6p
Publication Year :
2013

Abstract

Photomechanical effects in polymeric materials and composites transduce light into mechanical work. The ability to control the intensity, polarization, placement, and duration of light irradiation is a distinctive and potentially useful tool to tailor the location, magnitude, and directionality of photogenerated mechanical work. Unfortunately, the work generated from photoresponsive materials is often slow and yields very small power densities, which diminish their potential use in applications. Here, we investigate photo-initiated snap-through in bistable arches formed from samples composed of azobenzene-functionalized polymers (both amorphous polyimides and liquid crystal polymer networks) and report orders-of-magnitude enhancement in actuation rates (approaching 10<superscript>2</superscript> mm/s) and powers (as much as 1 kW/m<superscript>3</superscript>). The contactiess, ultra-fast actuation is observed at irradiation intensities <<100 mW/cm<subscript>2</subscript>. Due to the bistability and symmetry of the snap-through, reversible and bidirectional actuation is demonstrated. A model is developed to elucidate the underlying mechanics of the snap-through, specifically focusing on isolating the role of sample geometry, mechanical properties of the materials, and photomechanical strain. Using light to trigger contactless, ultrafast actuation in an otherwise passive structure is a potentially versatile tool to use in mechanical design at the micro-, meso-, and millimeter scales as actuators, as well as switches that can be triggered from large standoff distances, impulse generators for microvehicles, microfluidic valves and mixers in laboratory-on-chip devices, and adaptive optical elements. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
110
Issue :
47
Database :
Complementary Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
92536180
Full Text :
https://doi.org/10.1073/pnas.1313195110