Back to Search
Start Over
SAMPLE PATH LARGE DEVIATIONS FOR SQUARES OF STATIONARY GAUSSIAN PROCESSES.
- Source :
- Theory of Probability & Its Applications; 2013, Vol. 57 Issue 2, p347-357, 11p
- Publication Year :
- 2013
-
Abstract
- In this paper, we show large deviations for random step functions of type Z<subscript>n</subscript>(t) = 1/nΣ[<superscript>nt</superscript>] <subscript>k=1</subscript> X<superscript>2</superscript> <subscript>k</subscript>, where {X<subscript>k</subscript>}<subscript>k</subscript> is a stationary Gaussian process. We deal with the associated random measures vn = 1/n Σ<superscript>n</superscript> <subscript>k</subscript>=1 X<superscript>2</superscript> <subscript>k</subscript>б<subscript>k/n</subscript>. The proofs require a Szegö theorem for generalized Toeplitz matrices which is analogous to a result of Kac, Murdoch, and Szegö [J. Rational Mech. Anal., 2 (1953), pp. 767-800]. We also study the polygonal line built on Z<subscript>n</subscript>(t) and show moderate deviations for both random families. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0040585X
- Volume :
- 57
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Theory of Probability & Its Applications
- Publication Type :
- Academic Journal
- Accession number :
- 91870044
- Full Text :
- https://doi.org/10.1137/S0040585X97986023