Back to Search Start Over

Joint Spatial Division and Multiplexing—The Large-Scale Array Regime.

Authors :
Adhikary, Ansuman
Nam, Junyoung
Ahn, Jae-Young
Caire, Giuseppe
Source :
IEEE Transactions on Information Theory; Oct2013, Vol. 59 Issue 10, p6441-6463, 23p
Publication Year :
2013

Abstract

We propose joint spatial division and multiplexing (JSDM), an approach to multiuser MIMO downlink that exploits the structure of the correlation of the channel vectors in order to allow for a large number of antennas at the base station while requiring reduced-dimensional channel state information at the transmitter (CSIT). JSDM achieves significant savings both in the downlink training and in the CSIT uplink feedback, thus making the use of large antenna arrays at the base station potentially suitable also for frequency division duplexing (FDD) systems, for which uplink/downlink channel reciprocity cannot be exploited. In the proposed scheme, the multiuser MIMO downlink precoder is obtained by concatenating a prebeamforming matrix, which depends only on the channel second-order statistics, with a classical multiuser precoder, based on the instantaneous knowledge of the resulting reduced dimensional “effective” channel matrix. We prove a simple condition under which JSDM incurs no loss of optimality with respect to the full CSIT case. For linear uniformly spaced arrays, we show that such condition is approached in the large number of antennas limit. For this case, we use Szego's asymptotic theory of Toeplitz matrices to show that a DFT-based prebeamforming matrix is near-optimal, requiring only coarse information about the users angles of arrival and angular spread. Finally, we extend these ideas to the case of a 2-D base station antenna array, with 3-D beamforming, including multiple beams in the elevation angle direction. We provide guidelines for the prebeamforming optimization and calculate the system spectral efficiency under proportional fairness and max-min fairness criteria, showing extremely attractive performance. Our numerical results are obtained via asymptotic random matrix theory, avoiding lengthy Monte Carlo simulations and providing accurate results for realistic (finite) number of antennas and users. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
00189448
Volume :
59
Issue :
10
Database :
Complementary Index
Journal :
IEEE Transactions on Information Theory
Publication Type :
Academic Journal
Accession number :
90263162
Full Text :
https://doi.org/10.1109/TIT.2013.2269476