Back to Search Start Over

Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans.

Authors :
Hunt, Piper Reid
Marquis, Bryce J.
Tyner, Katherine M.
Conklin, Sean
Olejnik, Nicholas
Nelson, Bryant C.
Sprando, Robert L.
Source :
Journal of Applied Toxicology; Oct2013, Vol. 33 Issue 10, p1131-1142, 12p
Publication Year :
2013

Abstract

ABSTRACT Studies on the effects of nanomaterial exposure in mammals are limited, and new methods for rapid risk assessment of nanomaterials are urgently required. The utility of Caenorhabditis elegans cultured in axenic liquid media was evaluated as an alternative in vivo model for the purpose of screening nanomaterials for toxic effects. Spherical silver nanoparticles of 10 nm diameter (10nmAg) were used as a test material, and ionic silver from silver acetate as a positive control. Silver uptake and localization, larval growth, morphology and DNA damage were utilized as endpoints for toxicity evaluation. Confocal reflection analysis indicated that 10nmAg localized to the lumen and tissues of the digestive tract of C. elegans. 10nmAg at 10 µg ml<superscript>-1</superscript> reduced the growth of C. elegans larvae, and induced oxidative damage to DNA as measured by 8-OH guanine levels. Consistent with previously published studies using mammalian models, ionic silver suppressed growth in C. elegans larvae to a greater extent than 10nmAg. Our data suggest that medium-throughput growth screening and DNA damage analysis along with morphology assessments in C. elegans could together provide powerful tools for rapid toxicity screening of nanomaterials. Published 2013. This article is a US Government work and is in the public domain in the USA. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0260437X
Volume :
33
Issue :
10
Database :
Complementary Index
Journal :
Journal of Applied Toxicology
Publication Type :
Academic Journal
Accession number :
89399235
Full Text :
https://doi.org/10.1002/jat.2872