Back to Search Start Over

Statistical indicators and state-space population models predict extinction in a population of bobwhite quail.

Authors :
Hefley, Trevor
Tyre, Andrew
Blankenship, Erin
Source :
Theoretical Ecology; Aug2013, Vol. 6 Issue 3, p319-331, 13p
Publication Year :
2013

Abstract

Early warning systems of extinction thresholds have been developed for and tested in microcosm experiments, but have not been applied to populations of wild animals. We used state-space population models and a statistical indicator to detect a transcritical bifurcation extinction threshold in a population of bobwhite quail ( Colinus virginianus) located in an agricultural region experiencing habitat deterioration and loss. The extinction threshold was detectible using two independent data sets. We compared predictions from state-space population models to predictions from a statistical indicator and found that predictions were corroborated. Using state-space population models, we estimated that our study population crossed the extinction threshold in 2010 (2002-2036; 95 % confidence intervals [CI]) using the whistle count (WC) data set and in 2008 (1999-2064; 95 % CI) using the Breeding Bird Survey (BBS) data. With the statistical indicator, we estimated that the extinction threshold will be crossed in 2018 (2004-2031; 95 % CI) using the WC data and will be crossed in 2012 (2006-2018; 95 % CI) using the BBS data. We expect extinction in our study population soon after crossing the extinction threshold, but the time to extinction and potential reversibility of the threshold are unknown. Our results suggest that neither small nor decreasing population size will warn of the transcritical bifurcation extinction threshold. We suggest that managers of wildlife populations in regions experiencing land use change should try to predict extinction thresholds and make management decisions to ensure the persistence of the species. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18741738
Volume :
6
Issue :
3
Database :
Complementary Index
Journal :
Theoretical Ecology
Publication Type :
Academic Journal
Accession number :
89151352
Full Text :
https://doi.org/10.1007/s12080-013-0195-3