Back to Search Start Over

Effect of Boron Nitride (BN) on Luminescent Properties of Y3Al5O12: Ce Phosphors and their White Light-Emitting Diode Characteristics.

Authors :
Wang, Xiaojun
Zhang, Hailong
Zhao, Yi
Liu, Xinjuan
Li, Huili
Zhang, Zhejuan
Sun, Zhuo
Source :
International Journal of Applied Ceramic Technology; Jul2013, Vol. 10 Issue 4, p610-616, 7p
Publication Year :
2013

Abstract

This article reports a low-cost yellow-emitting Y<subscript>3</subscript>Al<subscript>5- x</subscript>B<subscript> x</subscript>O<subscript>12- x</subscript>N<subscript> x</subscript>: Ce<superscript>3+</superscript> phosphor with an enhanced luminescent intensity and excellent thermal stability for white light-emitting diodes ( LEDs). It was synthesized by a simple gas-pressure sintering ( GPS) process. The effect of B<superscript>3+</superscript>- N<superscript>3−</superscript> incorporation on the optical properties of Y<subscript>3</subscript>Al<subscript>5</subscript>O<subscript>12</subscript>: Ce<superscript>3+</superscript> phosphor was investigated. The addition of appropriate amounts of boron nitride (BN) leads to a marked increase in photoluminescent intensity and a slight shift of its emission spectra toward the blue region, which is assigned to the improved crystallinity and increased particle size. Especially, the prepared oxynitride phosphor does not exhibit any thermal quenching under high temperature, and the emission intensity at 250°C even increases up to 175% of that measured at 20°C. Finally, the white LED flat lamp with luminous efficiency as high as 101 lm/W, color rendering index of 72, and correlated color temperature of about 6600 K is successfully realized by using YAG: Ce<superscript>3+</superscript> phosphor doped with 0.5 molar ratio BN, which is acceptable and promising for general indoor illuminations to replace fluorescent or incandescent lamps. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1546542X
Volume :
10
Issue :
4
Database :
Complementary Index
Journal :
International Journal of Applied Ceramic Technology
Publication Type :
Academic Journal
Accession number :
88800044
Full Text :
https://doi.org/10.1111/j.1744-7402.2012.02804.x