Back to Search
Start Over
Cascading Effects of Ocean Acidification in a Rocky Subtidal Community.
- Source :
- PLoS ONE; Apr2013, Vol. 8 Issue 4, p1-9, 9p
- Publication Year :
- 2013
-
Abstract
- Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO<subscript>2</subscript> on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO<subscript>2</subscript> levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO<subscript>2</subscript> effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to assemblages dominated by fleshy macroalgae. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 8
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- PLoS ONE
- Publication Type :
- Academic Journal
- Accession number :
- 87678809
- Full Text :
- https://doi.org/10.1371/journal.pone.0061978