Back to Search Start Over

Gelsolin activity controls efficient early HIV-1 infection.

Authors :
García-Expósito, Laura
Ziglio, Serena
Barroso-González, Jonathan
de Armas-Rillo, Laura
Valera, María-Soledad
Zipeto, Donato
Machado, José-David
Valenzuela-Fernández, Agustín
Source :
Retrovirology; 2013, Vol. 10 Issue 1, Special section p1-21, 21p, 9 Color Photographs
Publication Year :
2013

Abstract

Background: HIV-1 entry into target lymphocytes requires the activity of actin adaptors that stabilize and reorganize cortical F-actin, like moesin and filamin-A. These alterations are necessary for the redistribution of CD4-CXCR4/CCR5 to one pole of the cell, a process that increases the probability of HIV-1 Envelope (Env)-CD4/co-receptor interactions and that generates the tension at the plasma membrane necessary to potentiate fusion pore formation, thereby favouring early HIV-1 infection. However, it remains unclear whether the dynamic processing of F-actin and the amount of cortical actin available during the initial virus-cell contact are required to such events. Results: Here we show that gelsolin restructures cortical F-actin during HIV-1 Env-gp120-mediated signalling, without affecting cell-surface expression of receptors or viral co-receptor signalling. Remarkably, efficient HIV-1 Env-mediated membrane fusion and infection of permissive lymphocytes were impaired when gelsolin was either overexpressed or silenced, which led to a loss or gain of cortical actin, respectively. Indeed, HIV-1 Env-gp120-induced F-actin reorganization and viral receptor capping were impaired under these experimental conditions. Moreover, gelsolin knockdown promoted HIV-1 Env-gp120-mediated aberrant pseudopodia formation. These perturbed-actin events are responsible for the inhibition of early HIV-1 infection. Conclusions: For the first time we provide evidence that through its severing of cortical actin, and by controlling the amount of actin available for reorganization during HIV-1 Env-mediated viral fusion, entry and infection, gelsolin can constitute a barrier that restricts HIV-1 infection of CD4+ lymphocytes in a pre-fusion step. These findings provide important insights into the complex molecular and actin-associated dynamics events that underlie early viral infection. Thus, we propose that gelsolin is a new factor that can limit HIV-1 infection acting at a pre-fusion step, and accordingly, cell-signals that regulate gelsolin expression and/or its actin-severing activity may be crucial to combat HIV-1 infection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17424690
Volume :
10
Issue :
1
Database :
Complementary Index
Journal :
Retrovirology
Publication Type :
Academic Journal
Accession number :
87456783
Full Text :
https://doi.org/10.1186/1742-4690-10-39