Back to Search Start Over

EMBEDDINGS OF MÜNTZ SPACES: THE HILBERTIAN CASE.

Authors :
NOOR, S. WALEED
TIMOTIN, DAN
Source :
Proceedings of the American Mathematical Society; Jun2013, Vol. 141 Issue 6, p2009-2023, 15p
Publication Year :
2013

Abstract

Given a strictly increasing sequence ʌ=(λ<subscript>n</subscript>) of nonnegative real numbers, with ..., theMüntz spaces M<subscript>ʌ</subscript><superscript>p</superscript>. are defined as the closure in L<superscript>p</superscript>([0, 1]) of the monomials x<superscript>λ<subscript>n</subscript></superscript>. We discuss properties of the embedding M<subscript>ʌ</subscript><superscript>p</superscript>⊂L<superscript>p</superscript>(μ), where μ is a finite positive Borel measure on the interval [0, 1]. Most of the results are obtained for the Hilbertian case p = 2, in which we give conditions for the embedding to be bounded, compact, or to belong to the Schatten-von Neumann ideals. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029939
Volume :
141
Issue :
6
Database :
Complementary Index
Journal :
Proceedings of the American Mathematical Society
Publication Type :
Academic Journal
Accession number :
86276115
Full Text :
https://doi.org/10.1090/s0002-9939-2012-11681-8