Back to Search Start Over

Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents.

Authors :
Bataller, Román
Campos, Inmaculada
Laguarda-Miro, Nicolas
Alcañiz, Miguel
Soto, Juan
Martínez-Máñez, Ramón
Gil, Luís
García-Breijo, Eduardo
Ibáñez-Civera, Javier
Source :
Sensors (14248220); Dec2012, Vol. 12 Issue 12, p17553-17568, 16p, 1 Diagram, 3 Charts, 5 Graphs
Publication Year :
2012

Abstract

A new electronic tongue to monitor the presence of glyphosate (a non-selective systemic herbicide) has been developed. It is based on pulse voltammetry and consists in an array of three working electrodes (Pt, Co and Cu) encapsulated on a methacrylate cylinder. The electrochemical response of the sensing array was characteristic of the presence of glyphosate in buffered water (phosphate buffer 0.1 mol·dm<superscript>-3</superscript>, pH 6.7). Rotating disc electrode (RDE) studies were carried out with Pt, Co and Cu electrodes in water at room temperature and at pH 6.7 using 0.1 mol·dm<superscript>-3</superscript> of phosphate as a buffer. In the presence of glyphosate, the corrosion current of the Cu and Co electrodes increased significantly, probably due to the formation of Cu<superscript>2+</superscript> or Co<superscript>2+</superscript> complexes. The pulse array waveform for the voltammetric tongue was designed by taking into account some of the redox processes observed in the electrochemical studies. The PCA statistical analysis required four dimensions to explain 95% of variance. Moreover, a two-dimensional representation of the two principal components differentiated the water mixtures containing glyphosate. Furthermore, the PLS statistical analyses allowed the creation of a model to correlate the electrochemical response of the electrodes with glyphosate concentrations, even in the presence of potential interferents such as humic acids and Ca<superscript>2+</superscript>. The system offers a PLS prediction model for glyphosate detection with values of 098, -2.3 × 10<superscript>-5</superscript> and 0.94 for the slope, the intercept and the regression coefficient, respectively, which is in agreement with the good fit between the predicted and measured concentrations. The results suggest the feasibility of this system to help develop electronic tongues for glyphosate detection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
12
Issue :
12
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
84496938
Full Text :
https://doi.org/10.3390/s121217553