Back to Search Start Over

Efficient Image Classification via Multiple Rank Regression.

Authors :
Hou, Chenping
Nie, Feiping
Yi, Dongyun
Wu, Yi
Source :
IEEE Transactions on Image Processing; Jan2013, Vol. 22 Issue 1, p340-352, 13p
Publication Year :
2013

Abstract

The problem of image classification has aroused considerable research interest in the field of image processing. Traditional methods often convert an image to a vector and then use a vector-based classifier. In this paper, a novel multiple rank regression model (MRR) for matrix data classification is proposed. Unlike traditional vector-based methods, we employ multiple-rank left projecting vectors and right projecting vectors to regress each matrix data set to its label for each category. The convergence behavior, initialization, computational complexity, and parameter determination are also analyzed. Compared with vector-based regression methods, MRR achieves higher accuracy and has lower computational complexity. Compared with traditional supervised tensor-based methods, MRR performs better for matrix data classification. Promising experimental results on face, object, and hand-written digit image classification tasks are provided to show the effectiveness of our method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10577149
Volume :
22
Issue :
1
Database :
Complementary Index
Journal :
IEEE Transactions on Image Processing
Publication Type :
Academic Journal
Accession number :
84489459
Full Text :
https://doi.org/10.1109/TIP.2012.2214044