Back to Search
Start Over
Efficient Image Classification via Multiple Rank Regression.
- Source :
- IEEE Transactions on Image Processing; Jan2013, Vol. 22 Issue 1, p340-352, 13p
- Publication Year :
- 2013
-
Abstract
- The problem of image classification has aroused considerable research interest in the field of image processing. Traditional methods often convert an image to a vector and then use a vector-based classifier. In this paper, a novel multiple rank regression model (MRR) for matrix data classification is proposed. Unlike traditional vector-based methods, we employ multiple-rank left projecting vectors and right projecting vectors to regress each matrix data set to its label for each category. The convergence behavior, initialization, computational complexity, and parameter determination are also analyzed. Compared with vector-based regression methods, MRR achieves higher accuracy and has lower computational complexity. Compared with traditional supervised tensor-based methods, MRR performs better for matrix data classification. Promising experimental results on face, object, and hand-written digit image classification tasks are provided to show the effectiveness of our method. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10577149
- Volume :
- 22
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Image Processing
- Publication Type :
- Academic Journal
- Accession number :
- 84489459
- Full Text :
- https://doi.org/10.1109/TIP.2012.2214044