Back to Search
Start Over
MR chemical exchange imaging with spin-lock technique (CESL): a theoretical analysis of the Z-spectrum using a two-pool R1? relaxation model beyond the fast-exchange limit.
- Source :
- Physics in Medicine & Biology; 12/21/2012, Vol. 57 Issue 24, p8185-8200, 16p
- Publication Year :
- 2012
-
Abstract
- The chemical exchange (CE) process has been exploited as a novel and powerful contrast mechanism for MRI, which is primarily performed in the form of chemical exchange saturation transfer (CEST) imaging. A spin-lock (SL) technique can also be used for CE studies, although traditionally performed and interpreted quite differently from CEST. Chemical exchange imaging with spin-lock technique (CESL), theoretically based on the Bloch-McConnell equations common to CEST, has the potential to be used as an alternative to CEST and to better characterize CE processes from slow and intermediate to fast proton exchange rates through the tuning of spin-lock pulse parameters. In this study, the Z-spectrum and asymmetric magnetization transfer ratio (MTR<superscript>asym</superscript>) obtained by CESL are theoretically analyzed and numerically simulated using a general two-pool R<subscript>1</subscript>? relaxation model beyond the fastexchange limit. The influences of spin-lock parameters, static magnetic field strength B<subscript>0 </subscript>and physiological properties on the Z-spectrum and MTRasym are quantitatively revealed. Optimization of spin-lock frequency and spin-lock duration for the maximum CESL contrast enhancement is also investigated. Numerical simulation results in this study are compatible with the findings in the existing literature on CE imaging studies. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00319155
- Volume :
- 57
- Issue :
- 24
- Database :
- Complementary Index
- Journal :
- Physics in Medicine & Biology
- Publication Type :
- Academic Journal
- Accession number :
- 84440656
- Full Text :
- https://doi.org/10.1088/0031-9155/57/24/8185