Back to Search Start Over

The modification of graphene with alcohols and its use in shape memory polyurethane composites.

Authors :
Oh, Seong Min
Oh, Kyung Min
Dao, Trung Dung
Lee, Hyung‐il
Jeong, Han Mo
Kim, Byung Kyu
Source :
Polymer International; Jan2013, Vol. 62 Issue 1, p54-63, 10p
Publication Year :
2013

Abstract

Graphene prepared by the thermal reduction of graphite oxide was modified by reactions with methanol or 1-butanol using aqueous HBF<subscript>4</subscript> solution as a catalyst. Results showed that the reaction created hydroxyl groups on the graphene and at the same time reduced the number of defects. Gravimetry, thermogravimetry, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed that the alcohols had reacted with epoxide groups on graphene. Raman spectroscopy showed that the defects in the graphene were repaired through other accompanying reactions. The reinforcing effect of graphene, observed in the tensile properties and the shape memory behavior of graphene/polyurethane composites, was increased when the graphene was modified with methanol. However, decreases in density and glass transition temperature were evident for the composites made with alcohol-modified graphene. These results show that the newly created hydroxyl groups on graphene produce effective covalent bonds with the polyurethane chains of the matrix; however, the increased number of bonds restricts the rearrangement of the matrix molecules for dense packing. The covalent bonds between graphene and polyurethane chains enhanced shape recoverability and reduced the hysteresis brought about by repeated thermomechanical cycles. Copyright © 2012 Society of Chemical Industry [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09598103
Volume :
62
Issue :
1
Database :
Complementary Index
Journal :
Polymer International
Publication Type :
Academic Journal
Accession number :
84387571
Full Text :
https://doi.org/10.1002/pi.4366