Back to Search Start Over

Synergistic electric field enhancement of the effectiveness of chlorine species formed during electrochemical disinfection of drinking water.

Authors :
Nath, Hilary
Langdon, Alan
Source :
Water Supply; 2012, Vol. 12 Issue 6, p862-868, 7p
Publication Year :
2012

Abstract

In line in situ electrochemical disinfection of drinking water with chloride concentrations as low as 10 mg/L has been demonstrated at practical flow rates of at least 3 m³/day using a novel perforated electrode flow through (PEFT) cell with a 50 μm inter-electrode gap. Sufficient chlorine to achieve 6 log inactivation of Escherichia coli bacteria was produced at applied voltages as low as 5 V and with energy consumptions as low as 0.5 kWh/m³. At slightly higher applied voltages, the specific lethality of electrochemically produced chlorine was enhanced by at least two orders of magnitude to greater than 50 L/mg min. This dramatically enhanced lethality is consistent with a synergistic effect resulting from reversible electroporation when electric fields greater than 1.3 kV/cm are produced. There was no evidence for involvement of other species such as reactive oxygen species (ROSs). Disinfection of drinking water using the PEFT cell is cost competitive with other disinfection technologies and when enhanced by the electric field is much less likely to produce disinfection by products. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16069749
Volume :
12
Issue :
6
Database :
Complementary Index
Journal :
Water Supply
Publication Type :
Periodical
Accession number :
83538791
Full Text :
https://doi.org/10.2166/ws.2012.064