Back to Search Start Over

Enhanced transpiration in response to wind effects at the edge of a blue gum (Eucalyptus globulus) plantation.

Authors :
Taylor, P. J.
Nuberg, I. K.
Hatton, T. J.
Source :
Tree Physiology; 2001, Vol. 21 Issue 6, p403-408, 6p
Publication Year :
2001

Abstract

In Australia, tree planting has been widely promoted to alleviate dryland salinity and one proposed planting configuration is that of strategically placed interception belts. We conducted an experiment to determine the effect of tree position in a belt on transpiration rate. We also assessed how much the effect of tree position can be explained by advection and environmental conditions. Daily transpiration rates were determined by the heat pulse velocity technique for four edge and 12 inner trees in a 7-year-old Tasmanian blue gum (Eucalyptus globulus) plantation in South Australia. Various climatic variables were logged automatically at one edge of the plantation. The relationship between daily sap flow and sapwood area was strongly linear for the edge trees (r2 = 0.97), but only moderately correlated for the inner trees (r2 = 0.46), suggesting an edge effect. For all trees, sap flow normalized to sapwood area (Qs) increased with potential evaporation (PE) initially and then became independent as PE increased further. There was a fairly close correlation between transpiration of the edge and inner trees, implying that water availability was partially responsible for the difference between inner and edge trees. However, the ratio of edge tree to inner tree transpiration differed from unity, indicating differences in canopy conductance, which were estimated by an inverse form of the Penman-Monteith equation. When canopy conductances were less than a critical value, there was a strong linear relationship between Qs of the edge and inner trees. When canopy conductances of the edge trees were greater than the critical value, the slope of the linear relationship was steeper, indicating greater transpiration of the edge trees compared with the inner trees. This was interpreted as evidence for enhancement of transpiration of the edge trees by advection of wind energy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0829318X
Volume :
21
Issue :
6
Database :
Complementary Index
Journal :
Tree Physiology
Publication Type :
Academic Journal
Accession number :
80057426
Full Text :
https://doi.org/10.1093/treephys/21.6.403